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Abstract. We first show that, for problems dealing with trions, it is totally hopeless to use the standard
many-body description in terms of electrons and holes and its associated Feynman diagrams. We then
show how, by using a description as electrons interacting with excitons, we can obtain the trion absorption
through far simpler electron-exciton diagrams. These diagrams are indeed novel because, for excitons being
not exact bosons, standard procedures designed to deal with interacting true fermions or true bosons
cannot be used. A new many-body formalism is in fact necessary to establish the validity of these electron-
exciton diagrams. It relies on the “commutation technique” we recently developed to treat interaction
with composite bosons. This technique generates a scattering associated to Coulomb processes between
electrons and excitons, without electron exchange, and a “scattering” associated to electron exchange inside
the electron-exciton pairs, without Coulomb process — this Pauli scattering being the original part of our
new many-body theory.

PACS. 71.35.-y Excitons and related phenomena

1 Introduction

While the physics of excitons and electron-hole plasma
has been a subject of great interest in the 60’s and 70’s,
the physics of trions [1,2], i.e., excitons bound to an elec-
tron or a hole, developed recently only: The exciton being
neutral, its binding to a carrier is quite weak compared to
the electron-hole (e-h) binding. However, due to the de-
velopment of nanostructures, it should be now possible to
experimentally study these trions because, as all binding
energies are enhanced by the reduction of dimensional-
ity, trions, hard to see in bulk samples, should appear as
line well below the exciton line in the absorption spectra
of doped semiconductor quantum wells (see for instance
Ref. [3–9]).

From a theoretical point of view [10–19], the study
of these trions still faces major difficulties: (i) Being the
eigenstates of two electrons and one hole (e-e-h) – or two
holes and one electron – in Coulomb interaction, their
energies and wave functions are not analytically known;
(ii) because these trions are bound states, they cannot be
reached from a (finite) perturbative approach; (iii) while
many-body procedures have been developed in the 60’s to
treat interactions between fermions (or bosons), we show
that they are completely inappropriate for bound states
resulting from the exact summation of all Coulomb pro-
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cesses between more than two fermions, as in the trion
case.

With respect to this last point, a good idea can be to
bind one electron to the hole for the trion to appear as
a two-body system: one electron interacting with one ex-
citon [18]. However, since electrons are indistinguishable,
the electron which is bound to the hole to make the ex-
citon, is a priori arbitrary. Moreover, as another aspect
of this arbitrariness, the exciton is not an exact boson so
that standard many-body procedures, designed for exact
fermions or exact bosons, cannot be used for this interact-
ing electron-exciton (e-X) system.

In spite of these difficulties, the description of a trion
as an electron interacting with an exciton is physically
appealing. In particular, it allows to immediately realize
that, as the exciton is neutral, its attraction is very weak,
so that the trion binding has to be much weaker than the
exciton binding. It is thus worth finding a way to overcome
the difficulties this e-X description raises.

In order to use it, we first have to identify a scatter-
ing for the e-X Coulomb interaction, although, due to the
composite nature of the exciton, there is no way to extract
it from the Coulomb potential between individual carriers.
In addition, we must find a way to take care of the electron
indistinguishability when constructing the exciton. This
indistinguishability somehow adds novel exchange “scat-
terings” to the more standard e-X Coulomb scatterings,
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with specific rules which have to be determined — and
which are the novel part of our e-X diagrams.

This paper in fact deals with the simplest problem on
trions, namely the absorption of one photon in the pres-
ence of one carrier. The photon creating one e-h pair, we
will first consider it in the framework of an e-e-h system,
and show that the corresponding response function, writ-
ten with standard e-h diagrams, is so complicated that
there is no hope to identify and sum up all the Coulomb
processes responsible for trions.

We will then show that this response function ap-
pears very simply if we bind one electron to the hole
and have this exciton scattered by its interactions with
the additional electron. The spin conservation of the
semiconductor-photon interaction leads to differentiate
absorptions in which the spins of the photocreated and
initial electrons are identical or different. We will show
that electron exchange enters the photon absorption ex-
plicitly in the first case only, i.e., when triplet trions are
the only ones created, in spite of the fact that triplet trions
can also be created when the two electrons have different
spins. We will establish the rules for these e-X diagrams,
using our commutation technique for excitons interact-
ing with electrons [18]. It allows to calculate the response
function to a photon field at any order in the e-X inter-
action, while keeping the composite nature of the exciton,
i.e., the fact that the exciton can be made with any of the
two electrons.

This first paper allows to establish the problem of one
exciton interacting with one electron on a firm basis, in or-
der to possibly face a much harder one, namely one exciton
interacting with N electrons, as for photon absorption in
the presence of a Fermi sea [11,14]. Such an absorption has
been considered long ago by Combescot and Nozières [20].
In their work, the spin degree of freedom of the electrons
has been dropped as well as the electron-electron (e-e)
repulsion. While the first simplification physically corre-
sponds to have one kind of spin only in the problem — as
for a σ− photon absorbed by a quantum well having a
(+1/2) polarized Fermi sea so that (Sz = 1) triplet trions
are the only ones possibly formed —, the second simpli-
fication is dramatic: Once it is made, the trion physics is
irretrievably lost. Indeed, the e-e repulsion partly compen-
sates the e-h attraction, making the trion binding energy
much weaker than the exciton one.

Let us stress that this crucial effect of the e-e interac-
tion cannot be included through a screening of the e-h
attraction, as suggested by Hawrylak in his 2D exten-
sion [11] of Combescot-Nozières’s work. Indeed, such a
screening in the same way reduces the e-h attraction re-
sponsible for the exciton binding, so that the trion bind-
ing is then weak but equal to the exciton one, not smaller
as it should. This screening procedure in fact generates
one energy level, not two, this level being possibly occu-
pied by two electrons with different spins. This procedure
thus misses the whole trion physics, with an electron very
weakly bound, compared to the other.

To get a trion binding energy much weaker than the
exciton one, we have to include the e-e interaction in-

dependently from the e-h attraction, not just through a
screening. The trouble is that, within the many-body pro-
cedures at hand up to now, there is no hope to add this
e-e repulsion to the set of already complicated e-h pro-
cesses which, summed up, give rise to the so called “Fermi
edge singularities”. In this paper, we explicitly show that
the e-h Feynman diagrams are already inappropriate to
describe just one trion. A new many-body formalism is
thus highly needed if we want to describe the trion ab-
sorption change with doping observed experimentally. Its
presentation is in fact the underlying purpose of this work,
with a particular attention paid to the interplay between
the somewhat normal e-X direct Coulomb scattering and
the far more subtle electron exchange inside the e-X pair.

The paper is organized as follows:
In Section 2, we briefly recall the usual procedure to

calculate photon absorption and we try to calculate it
in the case of trion formation, using the standard many-
body procedure which leads to expand it through the well
known e-h Feynman diagrams. We show that, even in the
simple case of a photon creating an electron with a spin
different from the initial one, the summation of these dia-
grams, with all possible Coulomb processes between e-e-h,
is totally hopeless.

In Section 3, we reconsider our description of a trion as
an electron interacting with an exciton, the presentation
given here being more direct than the one of our previous
works [17,18].

In Section 4, we calculate the trion response function
in terms of these interacting e-X pairs. We show that it
appears as a sum of e-X ladder diagrams, with possibly
one — but no more than one — electron exchange be-
tween e and X, if — and only if — the spins of the pho-
tocreated and initial electrons are the same. This result,
which can be surprising at first since, at each e-X scatter-
ing, the exciton can a priori be constructed with any of
the two electrons, physically comes from the fact that two
exchanges reduce to an identity.

2 The trion as two electrons plus one hole

A quite direct way to reach the trion is to look at the pho-
ton absorption when the semiconductor has one electron
already present in the sample. Let us first briefly recall
how photon absorption is usually obtained and how it ap-
pears in the case of exciton formation, since its comparison
with trion will be of great help.

2.1 Standard procedure to calculate photon absorption

The linear absorption of a photon field is given by the
Fermi golden rule,

2π

�

∑

F

|〈F |W †|I〉|2 δ(EF − EI) = −2
�

ImS, (2.1)
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where, due to 1/(x + iη) = P(1/x)− iπδ(x), the response
function S reads

S = 〈I|W 1
EI − Ĥ + iη

W †|I〉. (2.2)

Ĥ is the Hamiltonian of the uncoupled matter-photon sys-
tem, Ĥ = H + ωpα

†α, with H being the matter Hamil-
tonian and α† the creation operator of (ωp,Qp) photons.
The matter-photon coupling W † reads W † = U † α, where
for circularly polarized photons (±) in quantum wells, we
have, due to momentum conservation,

U †
±(Qp) = λ∗ ∑

p

a†
p+αeQp,∓ b†−p+αhQp,±,

αe = 1 − αh =
me

me + mh
· (2.3)

a†
p,∓ creates an electron with momentum p and spin ∓1/2,

while b†p,± creates a hole with spin ±3/2. The reason for
this splitting of Qp between (e, h) will become apparent
below.

For Np photons and a matter initial state |i〉 with en-
ergy Ei, the initial state in equation (2.2) reads |I〉 =
|Np〉 ⊗ |i〉, the initial energy EI being Npωp + Ei. This
leads to

S± = Np 〈i|U±(Qp)
1

ωp + Ei − H + iη
U †
±(Qp)|i〉. (2.4)

In equation (2.4), H acts on the photocreated e-h pair
plus the initial carriers. Many-body effects between them
follow from the identity

1
a − H

=
1

a − H0
+

1
a − H

V
1

a − H0
, (2.5)

valid for H = H0 + V , which can be iterated as

1
a − H

=
1

a − H0
+

1
a − H0

V
1

a − H0
+ · · · (2.6)

In the case of semiconductors, the free part H0 reads

H0 =
∑

k,s

ε
(e)
k a†

k,sak,s +
∑

k,m

ε
(h)
k b†k,mbk,m,

ε
(e,h)
k =

�
2k2

2me,h
, (2.7)

while V is the Coulomb potential between carriers,

V =
1
2

∑

q �=0

Vq




∑

k,k′,s,s′
a†
k+q,sa

†
k′−q,s′ak′,s′ak,s

+
∑

k,k′,m,m′
b†k+q,mb†k′−q,m′bk′,m′bk,m

−2
∑

k,k′,s,m′
a†
k+q,sb

†
k′−q,m′bk′,m′ak,s



 , (2.8)

with Vq = 2πe2/Ωq in 2D, Ω being the sample volume.

2.2 Photon absorption with exciton formation, using
electron-hole diagrams

For σ+ photons absorbed in an empty well, the response
function given in equation (2.4) reads, due to equa-
tion (2.3),

SX = Np|λ|2
∑

p′,p

〈v|b−p′+αhQp,+ ap′+αeQp,−

× 1
ωp − H + iη

a†
p+αeQp,− b†−p+αhQp,+|v〉, (2.9)

|v〉 being the e-h vacuum state with an energy chosen as
zero. SX is calculated using the expansion (2.6). Due to
our Qp splitting, ε

(e)
p+αeQp

+ ε
(h)
−p+αhQp

= ε
(X)
p +E(X)

Qp
, with

ε(X)
p =

�
2p2

2(m−1
e + m−1

h )−1

E(X)
Q =

�
2Q2

2(me + mh)
, (2.10)

so that the zero order term reduces to

S
(0)
X = Np|λ|2

∑

p

1

ωp − ε
(X)
p − E(X)

Qp
+ iη

= Np|λ|2
∑

p

G(eh)(ωp,Qp;p), (2.11)

which can be seen as a definition of the free e-h propaga-
tor G(eh)(ωp,Qp;p).

The first order term in Coulomb interaction appears as

S
(1)
X = Np|λ|2

∑

p′,p

G(eh)(ωp,Qp;p′)

× Vp′−p G(eh)(ωp,Qp;p). (2.12)

The second order term contains three G(eh) and two
Coulomb potentials; and so on. . . The exciton response
function thus corresponds to the well known set of e-h lad-
der diagrams [21] shown in Figure 1, G(eh) being noth-
ing but

G(eh)(ωp,Qp;p) =
∫

idω

2π
g(e)(ω + ωp,p + αeQp)

× g(h)(−ω,−p + αhQp), (2.13)

where g(e)(ω,k) = [ω − ε
(e)
k + iη]−1 and g(h)(ω,k) =

[ω − ε
(h)
k + iη]−1 are the free electron and free hole prop-

agators for empty bands.

2.3 Photon absorption with trion formation, using
electron-hole diagrams

To get a X− trion, the semiconductor initial state must
have one electron. If ki and si are its momentum and spin,
this initial state reads |i〉 = a†

ki,si
|v〉, with Ei = ε

(e)
ki

. While
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Fig. 1. Photon absorption with exciton formation: well-known set of e-h ladder diagrams with 0, 1, 2, 3. . . e-h Coulomb
interactions: (a), (b), (c), (d) respectively. Solid line: electron. Dashed line: hole. Wavy line: Coulomb interaction between
electron and hole. In a well, a σ+ photon creates a hole with momentum (+3/2), noted +, and an electron with spin (−1/2),
noted −.

the photon polarization is unimportant for an empty semi-
conductor, it is crucial when electrons are present: In a
quantum well, if the spins of the photocreated and initial
electrons are different, the hole can only recombine with
the photocreated electron, while it can recombine with
any electron if the spins are identical. Consequently, the
response function crucially depends on the electron spins.
Let us start with the simplest case.

2.3.1 Photocreated electron with spin different
from the initial one

This happens when a σ+ photon is absorbed in a quantum
well having a si = +1/2 electron. Using equations (2.3–4),
the zero order term of the response function reads

S̃
(0)
�= = Np|λ|2

∑

p′,p

〈v|aki,+b−p′+αhQp,+ap′+αeQp,−

×
(

1

ωp + ε
(e)
ki

− H0 + iη

)
a†
p+αeQp,− b†−p+αhQp,+ a†

ki,+
|v〉,

(2.14)

which is nothing but the exciton zero order response func-
tion S

(0)
X , so that S̃

(0)
�= corresponds to the diagram of Fig-

ure 1a. If we now turn to the first order term, it is given by

S̃
(1)
�= = Np|λ|2

∑

p′,p

G(eh)(ωp,Qp;p′)G(eh)(ωp,Qp;p)

× 〈v|aki,+ b−p′+αhQp,+ ap′+αeQp,−

× V a†
p+αeQp,− b†−p+αhQp,+ a†

ki,+
|v〉, (2.15)

where V is the Coulomb potential of equation (2.8). As
this Coulomb potential only contains q �= 0 excitations,
the above matrix element differs from 0 for p′ = p+q only:
This first order term is thus equal to S

(1)
X and corresponds

to the ladder diagram of Figure 1b.
The higher order terms are not as simple: When more

than one Coulomb excitation take place, in addition to
processes in which the photocreated electron is scattered
several times by the hole, other processes involving the
initial electron become possible: In addition to the exci-
ton ladder diagrams of Figure 1c at second order in V
and Figure 1d at third order, we also have the 4 diagrams
of Figure 2 at second order in V and the 20 diagrams of
Figure 3 at third order. Note that, since the (+1/2) elec-
tron “band” contains one electron only, these diagrams
have one conduction-hole line only, without any possible
scattering, i.e., one electron line going from left to right.

As the X− trion corresponds to the bound state
of e-e-h resulting from their Coulomb interactions, the
Coulomb potential has to be taken exactly into account
i.e., included at all orders, to possibly generate bound
state poles in the response function. In view of the third
order processes shown in Figure 3, it is obviously hopeless
to draw the diagrams for all these Coulomb interactions,
at any order in V , and to sum them up to get the trion.

2.3.2 Photocreated electron with spin identical to the initial
one

The situation is worse when the photocreated and initial
electrons have the same spin, because the hole can now
recombine with any of the two electrons. While the zero
order term, given in equation (2.14), with a†

ki,+
replaced
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Fig. 2. Absorption of a σ+ photon with trion formation, in the case of photocreated and initial electrons having different spins:
second order in Coulomb interaction. The diagrams of this figure have to be added to the one of Figure 1c.

Fig. 3. Same as Figure 2, with three Coulomb interactions. The diagrams of this figure have to be added to the one of Figure 1d.
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Fig. 4. Absorption of a σ+ photon with trion formation, in the case of photocreated and initial electrons having the same spin,
at first order (a) and second order (b) in Coulomb interaction. The diagrams of this figure, which correspond to exchanges
between the photocreated and initial electrons, have to be added to the diagrams of Figures 1b, 1c, 2.

by a†
ki,−, stays essentially unchanged, p being just differ-

ent from ki−αeQp, new diagrams with exchange processes
between the two electrons appear at higher orders. From
equation (2.15) with a†

ki,+
replaced by a†

ki,−, we see that,
beside p′ = p + q which gives the first order ladder di-
agram of Figure 1b, we can also have p = p′ = ki − q
which gives the first order exchange diagram of Figure 4a.
Similarly, beside the second order direct diagrams of S̃

(2)
�= ,

we also have the six diagrams of Figure 4b which result
from exchange processes between the photocreated and
the initial electrons; and so on...

This leads us to conclude that the representation of a
trion as e-e-h, and its associated standard e-h Feynman
diagrams, are completely inappropriate.

The description of a trion as an electron interacting
with an exciton is actually far better. Let us first re-
call the main steps of the many-body procedure on which
it is based and which allows an exact treatment of the
tricky part of this description, namely the electron indis-
tinguishability. This procedure ultimately leads to repre-
sent the trion through novel e-X diagrams, with specific
rules, not easy to guess at first for the new Pauli “scatter-
ings” coming from pure exchange, i.e., exchange without
Coulomb.

3 The trion as one electron plus one exciton

By considering the trion as an electron interacting with
an exciton, we tend to put the trion and the exciton on
equal footing — with the hole of the exciton just replaced
by an exciton. This is actually misleading because, due to
the electron indistinguishability, the trion is definitely far
more subtle than the exciton. In order to grasp the deep
differences between them, it can be useful to briefly recall

a few well known results on exciton. This will allow us to
settle important notations, also useful for trion.

3.1 A few results on exciton

3.1.1 First quantization

The exciton can be seen as a two-body object, made of
one electron (me, re) and one hole (mh, rh). If we extract
its center of mass,

MX = me + mh RX = (mere + mhrh)/MX , (3.1)

we are left with its relative motion, characterized by

µ−1
X = m−1

e + m−1
h r = re − rh. (3.2)

The exciton Hamiltonian reads

HX =
p2

e

2me
+

p2
h

2mh
− e2

|re − rh|
=

P2
X

2MX
+ hX , (3.3)

where hX = h
(0)
X − v(r) is the exciton relative mo-

tion Hamiltonian composed of a free-particle part h
(0)
X =

p2
r/2µX and a Coulomb attraction −v(r) = −e2/r.

The eigenstates of the relative motion free part are the
plane waves |p〉 of energies ε

(X)
p given in equation (2.10):

(h(0)
X − ε

(X)
p )|p〉 = 0. They are such that 〈p′|p〉 = δp′,p,

their closure relation being
∑

p |p〉〈p| = I.
The eigenstates |ν〉 of the full relative motion Hamilto-

nian, (hX −ε
(X)
ν )|ν〉 = 0, are made of bound and diffusive

states. They are such that 〈ν′|ν〉 = δν′,ν , their closure
relation being

∑
ν |ν〉〈ν| = I.
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In terms of |p〉, these |ν〉 states read |ν〉 =∑
p |p〉〈p|ν〉, so that the projection over 〈p| of the

Schrödinger equation for |ν〉 leads to

(ε(X)
p − ε(X)

ν )〈p|ν〉 −
∑

p′
〈p|v(r)|p′〉 〈p′|ν〉 = 0, (3.4)

〈p|v(r)|p′〉 = Vp′−p, (3.5)

where Vq is the Fourier transform of the Coulomb poten-
tial v(r) appearing in hX .

If we come back to the full exciton Hamilto-
nian HX , its eigenstates are the |ν,Q〉’s with wave func-
tions 〈re, rh|ν,Q〉 = 〈r|ν〉〈RX |Q〉, where |Q〉 is the plane
wave of energy E(X)

Q given in equation (2.10): We do have

(HX − E
(X)
ν,Q )|ν,Q〉 = 0, with

E
(X)
ν,Q = ε(X)

ν + E(X)
Q . (3.6)

3.1.2 Second quantization

In second quantization, the semiconductor Hamiltonian
has the same form, equations (2.7–8), whatever the
e, h numbers. In terms of these free electron and hole cre-
ation operators, the creation operator for an exciton (ν,Q)
with electron spin s and hole momentum m reads

B†
ν,Q,s,m =

∑

p

〈p|ν〉 a†
p+αeQ,s b†−p+αhQ,m : (3.7)

(H − E
(X)
ν,Q )B†

ν,Q,s,m|v〉 = 0 is easy to check from equa-
tions (2.7−8; 3.4, 7). With this splitting of the exciton
momentum Q between (e, h), p is just the momentum of
the exciton relative motion. As easy to check from equa-
tion (3.7), we also have

a†
p+αeQ,s b†−p+αhQ,m =

∑

ν

〈ν|p〉B†
ν,Q,s,m. (3.8)

3.2 Trion in first quantization

To simplify the notations, we will here restrict to trions
made with two electrons and one hole.

A first difficulty with trions, compared to excitons,
arises from spins. They are unimportant for excitons if we
neglect “electron-hole exchange”, i.e., valence-conduction
Coulomb excitations, the exciton energies being then de-
generate with respect to (s, m). On the opposite, spins
are crucial for trions because they differentiate their states
through the parity of the wave function orbital part, with
respect to the electron positions. This parity is actually
linked to the trion total electronic spin: Singlets being
odd while triplets are even, their associate orbital wave
functions must be even and odd respectively, due to the
symmetry principle for the whole fermion wave function.

Another difficulty comes from the appropriate vari-
ables to describe the trion. The center of mass (MT ,RT )

is surely a good variable: For two electrons (me, re, re′)
and one hole (mh, rh), it reads

MT = 2me + mh

RT = (mere + mere′ + mhrh)/MT . (3.9)

While for excitons, there is only one variable r which,
along with RX , forms a good set of variables, i.e., for
which [ri, pj ] = i�δij , there are many ways [17] to choose
the two other spatial variables which, along with RT , form
a good set for trions. Among them, the convenient ones
for physical understanding are r, associated to µX , defined
in equation (3.2), and u, associated to µT , defined as

µ−1
T = m−1

e + M−1
X

u = re′ − RX , (3.10)

with (MX , RX) defined in equation (3.1). u is the distance
between e′ and the center of mass of (e, h), while µT is the
relative motion mass of this e′ electron and the (e, h) ex-
citon. Of course, due to the electron indistinguishability,
variables as good as (r,u) are

r′ = re′ − rh = u + αer

u′ = re − R′
X = (1 − α2

e)r − αeu, (3.11)

with R′
X = (mere′ + mhrh)/MX . This possible change

from (r,u) to (r′,u′), which corresponds to an electron
exchange in the trion, is present all over the trion rep-
resentation in terms of e-X. We will show below how to
handle it.

In terms of these variables, the trion Hamiltonian reads

HT =
p2

e

2me
+

p2
e′

2me
+

p2
h

2mh

− e2

|re − rh|
− e2

|re′ − rh|
+

e2

|re − r′e|

=
P2

T

2MT
+ hT . (3.12)

Like for excitons, the relative motion Hamiltonian hT

splits as h
(0)
T + w(r,u), with a free part h

(0)
T = hX +

p2
u/2µT , made of one exciton plus one effective particle

of mass µT , and an interaction w(r,u) which corresponds
to Coulomb processes between e′ and (e, h),

w(r,u) =
e2

|re′ − re|
− e2

|re′ − rh|

=
e2

|u − αhr|
− e2

|u + αer|
· (3.13)

The eigenstates of the relative motion free part, |ν,p〉,
are such that h

(0)
T |ν,p〉 = (ε(X)

ν + ε
(eX)
p )|ν,p〉, with

ε(eX)
p =

�
2p2

2µT
, (3.14)

and 〈r,u|ν,p〉 = 〈r|ν〉〈u|p〉. They fulfil
〈ν′,p′|ν,p〉 = δν′,νδp′,p, while their closure relation
reads

∑
ν,p |ν,p〉〈ν,p| = I.
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Fig. 5. (a) Exchange parameter Lν′p′;νp. The “in” exciton ν and the “out” exciton ν′ are made with different electrons. No
Coulomb interaction takes place in this scattering. (b) e-X direct Coulomb scattering Cdir

ν′p′;νp. The “in” exciton ν and the “out”
exciton ν′ are made with the same electron.

Let us call |η〉 the eigenstates of the trion relative
motion Hamiltonian, (hT − ε

(T )
η )|η〉 = 0. Using them,

the eigenstates of the trion full Hamiltonian HT are
the |η,K〉’s, since (HT − E

(T )
η,K)|η,K〉 = 0, with

E
(T )
η,K = ε(T )

η + E(T )
K , E(T )

K =
�

2K2

2MT
, (3.15)

their wave functions being

〈re, re′ , rh|η,K〉 = 〈r,u|η〉〈RT |K〉. (3.16)

As HT , given in equation (3.12), stays invariant under
the (e ↔ e′) exchange, its eigenstates are odd or even
with respect to this exchange. Since RT is unchanged, this
means that the 〈r,u|η〉’s are odd or even. Let us call η0

(resp. η1), the η indices which correspond to even (resp.
odd) functions with respect to (e ↔ e′) exchange. Due to
equation (3.11), this parity condition reads, for S = (0, 1),

〈r,u|ηS〉 = (−1)S〈r′,u′|ηS〉
= (−1)S〈u + αer, (1 − α2

e)r − αeu|ηS〉, (3.17)

which is definitely not very appealing. It is actually pos-
sible to rewrite this condition in a nicer form for phys-
ical understanding, by using other variables than (r,u),
namely (ν,p):

〈ν,p|ηS〉 =
∫

dr du 〈ν|r〉〈p|u〉〈r,u|ηS 〉. (3.18)

Equation (3.18) corresponds to a Fourier trans-
form “in the exciton sense”. If we insert equa-
tion (3.17) into equation (3.18) and replace 〈r′,u′|ηS〉 by∑

ν′,p′〈r′|ν′〉〈u′|p′〉〈ν′,p′|ηS〉, we find, by expressing all
spatial variables in terms of r and r′ (through u = r′−αer
and u′ = r − αer′) and using 〈p|r′ − αer〉〈r − αer′|p′〉 ≡
〈p + αep′|r′〉〈r|p′ + αep〉, that the |ηS〉’s fulfilling equa-
tion (3.17) are such that

〈ν,p|ηS〉 = (−1)S
∑

ν′,p′
Lνp;ν′p′ 〈ν′,p′|ηS〉, (3.19)

where Lνp;ν′p′ appears as

Lνp;ν′p′ = 〈ν|p′ + αep〉 〈p + αep′|ν′〉. (3.20)

As shown below, this Lνp;ν′p′ is a crucial parameter: It is
just the exchange “scattering” of the “commutation tech-
nique” for excitons interacting with electrons. Its link with
electron exchange inside an e-X pair can however be made
apparent right now, by noting that
∫

dre dre′ drh φ∗
ν′,Q′(re′ , rh) f∗

k′(re)φν,Q(re, rh) fk(re′ ) =

δK′,K Lν′p′;νp, (3.21)

where φν,Q(re, rh) = 〈re, rh|ν,Q〉 is the exciton wave func-
tion, fk(r) = 〈r|k〉 the free electron wave function while
the (Q,k) and (K,p) are linked by

K = Q + k, k = p + βeK

βe = 1 − βX =
me

MT
· (3.22)

In equation (3.21), the “in” exciton (ν,Q) and the “out”
exciton (ν′,Q′) are made with different electrons, re

and re′ , the corresponding process being shown in Fig-
ure 5a. As two exchanges reduce to an identity, we do
have

∑

ν′′,p′′
Lν′p′;ν′′p′′ Lν′′p′′;νp = δν′,ν δp′,p, (3.23)

easy to check from equation (3.20).
If we now come back to the trion relative motion eigen-

states, the η index is actually an η0 if the trion state has
a total electron spin S = 0 and an η1 if its total spin
is S = 1:

η = η0 δS,0 + η1 δS,1, (3.24)

where S is the trion electronic spin. The trion ground
state having a symmetrical orbital wave function, its in-
dex belongs to the η0 set, its total electronic spin being
S = 0. These |η〉’s form an orthogonal basis, 〈η′|η〉 = δη′,η,
their closure relation reading

∑
η |η〉〈η| = I, with the sum

taken over the η0’s and η1’s, so that I = I0 + I1, with
IS =

∑
ηS

|ηS〉〈ηS |. An interesting relation also exists for
the partial sum IS :

〈ν′,p′|IS |ν,p〉 =
1
2
(
δν′,ν δp′,p + (−1)SLν′p′;νp

)
, (3.25)
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as can be shown by noting that, due to equa-
tion (3.19), 〈ν′,p′|IS |ν,p〉 = (−1)S

∑
ν′′,p′′ Lν′p′;ν′′p′′

〈ν′′,p′′|IS |ν,p〉, so that, while 〈ν′,p′|I0 + I1|ν,p〉 =
δν′,ν δp′,p, we do have 〈ν′,p′|I0−I1|ν,p〉 = Lν′p′;νp. Equa-
tion (3.25) follows from the combination of these two
results.

Finally, the closure relation for the free states |ν,p〉
leads to write |η〉 as

∑
ν,p |ν,p〉〈ν,p|η〉. So that the pro-

jection over 〈ν,p| of the Schrödinger equation for |η〉 gives

(
ε(X)

ν + ε(eX)
p − ε(T )

η

)
〈ν,p|η〉

+
∑

ν′,p′
〈ν,p|w(r,u)|ν′,p′〉 〈ν′,p′|η〉 = 0, (3.26)

the scattering being linked to the Fourier transform “in
the exciton sense” of the Coulomb potential w(r,u) ap-
pearing in hT ,

〈ν,p|w(r,u)|ν′,p′〉 = W νν′
p′−p ≡ 〈ν|wp−p′(r)|ν′〉, (3.27)

where wq(r) = Vq(e−iαhq.r − eiαeq.r) is the Fourier trans-
form of w(r,u) with respect to the variable u. Note that
these results for trions are formally similar to the ones for
excitons, given in equations (3.4–5), except for the addi-
tional exciton quantum number ν. It turns out that this
scattering is just the direct Coulomb scattering Cdir

νp;ν′p′
of the “commutation technique” for excitons interacting
with electrons, which will be introduced below:

W νν′
p′−p ≡ Cdir

νp;ν′p′ . (3.28)

Its link to direct Coulomb processes is however easy to see
right now, since

∫
dre dre′ drh φ∗

ν′,Q′(re, rh) f∗
k′(re′)

×
(

e2

|re′ − re|
− e2

|re′ − rh|

)
φν,Q(re, rh) fk(re′ ) =

δK′,K Cdir
ν′p′;νp, (3.29)

where (Q,k;K,p) and (Q′,k′;K′,p′) are linked by equa-
tion (3.22), the “in” exciton (ν,Q) and the “out” exci-
ton (ν′,Q′) being here made with the same electron (re),
see Figure 5b.

3.3 Trions in second quantization

3.3.1 Creation operators of e-X pairs

If we look at the expression of the exciton creation oper-
ator in terms of e-h pairs, equation (3.7), we see that the
exciton center of mass momentum Q is split between (e, h)
according to their masses, namely αeQp and αhQp. In a

similar way, we are led to split the center of mass momen-
tum K of the e-X pair between (e,X) according to their
masses, namely

T †
ν,p,K;σ,s,m = a†

p+βeK,σ B†
ν,−p+βXK,s,m, (3.30)

with βe, βX given in equation (3.22).
In order to calculate the scalar product of these e-

X states, it is convenient to introduce the “commutation
technique” for excitons interacting with electrons. From
the deviation-from-boson operator Dn′n defined as [22,23]

[Bn′ , B†
n] = δn′,n − Dn′n, (3.31)

where the B†
n’s are the exciton creation operators, equa-

tion (3.7), and n stands for (ν,Q, s, m) while n′ stands
for (ν′,Q′, s′, m′), we find

[Dn′n, a†
k,σ] = δm′,m δs′,σ δK′,K

∑

k′
Lν′p′;νp a†

k′,s, (3.32)

with (Q,k;K,p) and (Q′,k′;K′,p′) again linked by equa-
tion (3.22), Lν′p′;νp being the parameter already appear-
ing in equations (3.19−21) (see Fig. 5a).

From equations (3.31−32), we then readily find

〈v|Tν′,p′,K′;σ′,s′,m′T †
ν,p,K;σ,s,m|v〉 =

δm′,m δK′,K (δσ′,σ δs′,s δν′,ν δp′,p − δσ′,s δs′,σ Lν′p′;νp).
(3.33)

It will also be useful to note that

T †
ν,p,K;σ,s,m = −

∑

ν′,p′
Lν′p′;νp T †

ν′,p′,K;s,σ,m, (3.34)

which results from the two possible ways to construct an
e-X pair out of e-e-h. (Note that the electron spins are
exchanged from the right to the left of Eq. (3.34).)

In the same way as exciton reads in terms of e-h pairs,
trion reads in terms of e-X pairs. The simplest way to get
this decomposition is to first find how the semiconductor
Hamiltonian H acts on one e-X pair. For that, we again
use the “commutation technique” for excitons interacting
with electrons. From the Coulomb creation operator V †

n

defined as [22,23]

[H, B†
n] = E(X)

n B†
n + V †

n , (3.35)

we find

[V †
n , a†

k,σ] =
∑

ν′,p′
Cdir

ν′p′;νp T †
ν′,p′,K;σ,s,m, (3.36)

where (Q,k;K,p) are linked by equation (3.22),
Cdir

ν′p′;νp being the quantity already appearing in equa-
tions (3.28−29). From equations (3.30, 35, 36), we readily
get

H T †
ν,p,K;σ,s,m|v〉 = EνpK T †

ν,p,K;σ,s,m|v〉

+
∑

ν′,p′
Cdir

ν′p′;νp T †
ν′,p′,K;σ,s,m|v〉,

(3.37)
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where EνpK is the energy of the free e-X pair (ν,p,K),

EνpK = ε(X)
ν + ε(eX)

p + E(T )
K , (3.38)

with ε
(eX)
p and E(T )

K being the relative motion and cen-
ter of mass energies of the e-X pair, defined in equa-
tions (3.14−15). Note that, for (Q,k;K,p) linked by
equation (3.22), we do have

ε
(e)
k + E(X)

Q = ε(eX)
p + E(T )

K . (3.39)

3.3.2 Creation operators for (Sz = ±1) trions

Trions with Sz = ±1 have a total spin S = 1, so that their
relative motion index belongs to the η1 set. Moreover, they
are constructed from a σ = ±1/2 electron and an s =
±1/2 exciton. Let us introduce [18]

T†
η1,K;1,±1,m =

1√
2

∑

ν,p

〈ν,p|η1〉 T †
ν,p,K;±1/2,±1/2,m,

(3.40)
which is similar to the exciton creation operator, equa-
tion (3.7), except for the 1/

√
2 prefactor which is made

for this operator to create a normalized e-e-h state; in-
deed, from equations (3.19, 33),

〈v|Tη1,K;1,±1,m T†
η1,K;1,±1,m|v〉 =

1
2

2
∑

ν,p

|〈ν,p|η1〉|2 = 1.

(3.41)
This T†

ν,K;1,±1,m is indeed the creation operator for
(S = 1, Sz = ±1) trions, since, due to equations (3.26, 37),
we do have

H T†
η1,K;1,±1,m|v〉 = E

(T )
η1,K T†

η1,K;1,±1,m|v〉, (3.42)

with
E

(T )
ηS ,K = ε(T )

ηS
+ E(T )

K . (3.43)

3.3.3 Creation operators for (Sz = 0) trions

(Sz = 0) trions have a total spin S = 0 or S = 1, so
that their relative motion indices can be either an η0 or
an η1. Moreover, they can be built either from a (σ = 1/2)
electron and a (s = −1/2) exciton, or the reverse. How-
ever, as the two corresponding e-X operators are linked by
equation (3.34), we can just use one type of e-X pairs [18],

T†
ηS ,K;S,0,m =

∑

ν,p

〈ν,p|ηS〉 T †
ν,p,K;+1/2,−1/2,m, (3.44)

as, from equations (3.19, 34), this operator also reads

T†
ηS ,K;S,0,m = −(−1)S

∑

ν,p

〈ν,p|ηS〉 T †
ν,p,K;−1/2,+1/2,m.

(3.45)

Using again equations (3.19, 33) and (3.26, 37), it is
straightforward to check that this T†

ηS ,K;S,0,m is indeed a
normalized trion creation operator:

H T†
ηS ,K;S,0,m|v〉 = E

(T )
ηS ,K T†

ηS ,K;S,0,m|v〉. (3.46)

Let us end by noting that these trion states form an
orthogonal basis,

〈v|Tη′
S′ ,K′;S′,S′

z,m′ T†
ηS ,K;S,Sz,m|v〉 =

δS′,S δS′
z,Sz δm′,m δη′

S′ ,ηS
δK′,K, (3.47)

while their closure relation reads

1 =
∑

S,Sz,m,ηS ,K

T†
ηS ,K;S,Sz,m|v〉 〈v|TηS ,K;S,Sz,m. (3.48)

Finally, it is easy to check that, in the same way as
trions can be written in terms of e-X pairs according to
equations (3.40, 44), e-X pairs can be written in terms of
trions, according to

T †
ν,p,K;±1/2;±1/2,m =

√
2
∑

η1

〈η1|ν,p〉T†
η1,K;1,±1,m, (3.49)

T †
ν,p,K;+1/2;−1/2,m =

∑

S,ηS

〈ηS |ν,p〉T†
ηS ,K;S,0,m, (3.50)

T †
ν,p,K;−1/2;+1/2,m = −

∑

S,ηS

(−1)S〈ηS |ν,p〉T†
ηS ,K;S,0,m.

(3.51)
Although somewhat more complicated due to spins, these
equations are the analogues of equation (3.8) for free e-h
pairs in terms of excitons.

3.4 Many-body effects between electrons and excitons

In usual many-body problems, the Hamiltonian splits
as H = H0 + V , so that the many-body effects result
from equation (2.5) and its iteration (2.6). In the case of
many-body effects with excitons, such a separation of the
Hamiltonian is not possible, due to the composite nature
of the exciton. Attempts have been made to produce a po-
tential VXX between excitons by bosonizing them. How-
ever, we have quite recently shown that these procedures,
although rather sophisticated, fail to give the correct an-
swer to physical quantities such as the exciton lifetime and
scattering rates [25], whatever the X-X scattering used
in VXX is. We have also shown that they fail to give
correct nonlinear susceptibilities [26], because they miss
purely Pauli many-body effects, i.e., scatterings in the ab-
sence of Coulomb interaction. This is why we are not going
here to bosonize the excitons.

It is actually possible to handle many-body effects with
excitons properly, by noting that equation (3.35) leads
to [24]

1
a − H

B†
n = B†

n

1

a − H − E
(X)
n

+
1

a − H
V †

n

1

a − H − E
(X)
n

. (3.52)
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Aν′′p′′;νp(a,K) =
∑

S′,S′
Z ,m′,η′

S′ ,K′

〈v|Tν′′,p′′,K;+1/2,−1/2,m T†
η′

S′ ,K′;S′,S′
z ;m′ |v〉〈v|Tη′

S′ ,K′;S′,S′
z ;m′ T †

ν,p,K;+1/2,−1/2,m|v〉

a − E
(T )

η′
S′ ,K′

· (3.57)

The above equation, which is the equivalent of equa-
tion (2.5) for usual many-body effects, is the key equa-
tion for many-body effects with excitons. While it cannot
be iterated as simply as equation (2.6), a similar iteration
can be generated by having equation (3.52) acting on ex-
citons or on electrons and by using either [V †

n , B†
n] given

in equation (3) of reference [22] for many-body effects be-
tween excitons, or [V †

n , a†
k,σ], given in equation (3.36), for

many-body effects between excitons and electrons.

3.4.1 (a − H)−1 acting on e-X pairs

Equations (3.36, 52) give (a−H)−1 acting on one e-X pair
as [18]

1
a − H

T †
ν,p,K;σ,s,m|v〉 =



T †
ν,p,K;σ,s,m|v〉 +

∑

ν′,p′

1
a − H

T †
ν′,p′,K;σ,s,m|v〉Cdir

ν′p′;νp





× 1
a − EνpK

, (3.53)

where EνpK is the free e-X pair energy, equation (3.38).
If we now iterate equation (3.53), we find

1
a − H

T †
ν,p,K;σ,s,m|v〉 =

∑

ν′,p′
Aν′p′;νp(a,K) T †

ν′,p′,K;σ,s,m|v〉, (3.54)

where Aν′p′;νp(a,K) expands on the e-X direct Coulomb
scatterings as

Aν′p′;νp(a,K) =
δν′,ν δp′,p

a − EνpK
+

Cdir
ν′p′;νp

(a − Eν′p′K)(a − EνpK)

+
∑

ν1,p1

Cdir
ν′p′;ν1p1

Cdir
ν1p1;νp

(a − Eν′p′K)(a − Eν1p1K)(a − EνpK)
+ · · ·

(3.55)

It corresponds to the ladder processes between electron
and exciton shown in Figure 6.

Just as the summation of the e-h ladder processes pro-
ducing the exciton reads in terms of exciton energies and
wave functions, the summation of these e-X ladder pro-
cesses producing the trion should read in terms of trion
energies and wave functions. We now show it.

Fig. 6. Set of e-X ladder processes. All over, the exciton is
made with the same electron and the e-X pair has the same
center of mass momentum K. The exciton quantum number, ν,
and the pair relative motion momentum, p, are the only things
which change in these ladder processes. The solid line cor-
responds to the electron. The double solid-dashed line corre-
sponds to the exciton. The wavy line corresponds to the e-X
direct Coulomb scattering Cdir

ν′p′;νp.

3.4.2 Sum of e-X ladder processes

If we take the scalar product of 〈v|Tν′′,p′′,K;+1/2,−1/2,m

with equation (3.54) for σ = −s = 1/2, we find
from equation (3.33)

〈v|Tν′′,p′′,K;+1/2,−1/2,m
1

a − H
T †

ν,p,K;+1/2,−1/2,m|v〉 =

Aν′′p′′;νp(a,K). (3.56)

If we now insert the trion closure relation (3.48) in the
above LHS, we get, using equations (3.42, 46),

see equation (3.57) above.

From the expansion of e-X pairs in terms of trions, equa-
tion (3.50), we immediately find, since trions form an or-
thogonal basis,

Aν′′p′′;νp(a,K) =
∑

S=0,1

A
(S)
ν′′p′′;νp(a,K), (3.58)

A
(S)
ν′′p′′;νp(a,K) =

∑

ηS

〈ν′′,p′′|ηS〉〈ηS |ν,p〉
a − E

(T )
ηS ,K

· (3.59)

Aν′′p′′;νp(a,K) contains contributions from both, singlet
and triplet trions (S = 0, 1).
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We can note that, if a′ = a − E(T )
K , the expres-

sion of Aν′′p′′;νp(a,K) in terms of trions, given in equa-
tions (3.58–59), reads

Aν′′p′′;νp(a,K) = Âν′′p′′;νp(a′) = 〈ν′′,p′′| 1
a′ − hT

|ν,p〉,
(3.60)

while its expansion in e-X Coulomb scatterings given in
equation (3.55) just corresponds to

Âν′′p′′;νp(a′) = 〈ν′′,p′′| 1

a′ − h
(0)
T

|ν,p〉

+ 〈ν′′,p′′| 1

a′ − h
(0)
T

w(r,u)
1

a′ − h
(0)
T

|ν,p〉 + · · · , (3.61)

due to the link between Cdir
ν′p′;νp and w(r,u) given in equa-

tions (3.27–28). It is then obvious that equation (3.61) just
follows from equation (3.60), since for hT = h

(0)
T +w(r,u),

we do have

1
a′ − hT

=
1

a′ − h
(0)
T

+
1

a′ − h
(0)
T

w(r,u)
1

a′ − h
(0)
T

+ · · ·

(3.62)
Let us stress that this summation of e-X ladder pro-

cesses has been established from a quite formal procedure
designed to treat e-X interactions. It can a priori be used
in any other problem dealing with electrons and excitons,
not just in the simplest one: one e-X pair, i.e., one trion.
It is however clear that it can also be used in this sim-
ple problem too, for which a first quantization formula-
tion, through the trion Hamiltonian HT (RT , r,u), is sim-
ple enough to be of practical use. This first quantization
formulation of the one-trion problem actually provides en-
lightening foreshortenings to some results on e-X pairs.
However, second quantization along with the formal def-
initions of direct Coulomb and exchange scatterings be-
tween electrons and excitons, are the only possible way to
treat more complicated problems with one hole plus many
electrons. The two aspects of the same results are however
of interest for the understanding of the trion physics.

4 Photon absorption using electron-exciton
diagrams

In Section 2, we have derived the photon absorption using
e-h diagrams in the cases of exciton and trion formations.
We have shown that these standard Feynman diagrams
are totally inappropriate for trions. In Section 3, we have
derived all the tools necessary to propose a new diagram-
matic procedure for photon absorption in terms of exci-
tons, while taking into account the fact that the exciton
can be made with any of the electrons present in the sam-
ple, through exchange “scatterings”, as generated by the
“commutation technique”.

This new formulation of photon absorption is in fact
quite natural: Indeed, the semiconductor-photon interac-
tion, given in equation (2.3) in terms of free electrons and

holes, can also be written in terms of excitons. From equa-
tion (3.8) and the fact that

√
Ω〈p|r = 0〉 = 1, we readily

get

U †
±(Qp) =

∑

ν

λ∗
ν B†

ν,Qp,∓,±, (4.1)

λ∗
ν = λ∗√Ω〈ν|r = 0〉. (4.2)

This just corresponds to the well known enhancement
factor of the coupling to exciton instead of free pairs,
as |〈ν|r = 0〉|2 is of the order of the inverse exciton volume:
Just from this enhanced coupling, the exciton representa-
tion can already appear somewhat better.

4.1 Photon absorption with exciton formation

The response function, equation (2.4), for a semiconductor
with no carrier, irradiated by σ+ photons, also reads

SX =Np

∑

ν′,ν

λν′〈v|Bν′,Q,−,+
1

ωp − H + iη
B†

ν,Qp,−,+|v〉λ∗
ν .

(4.3)

= Np

∑

ν

λν GX(ωp,Qp; ν)λ∗
ν , (4.4)

where GX(ω,Q; ν), defined as

GX(ω,Q; ν) =
1

ω − E
(X)
ν,Q + iη

, (4.5)

can be seen as an exciton propagator. This leads to rep-
resent SX by the exciton diagram of Figure 7a, which is
already far simpler than the set of e-h ladder diagrams of
Figure 1.

4.2 Photon absorption with trion formation

From equations (2.4,4.1), the response function for an
initial state with one ki, si electron and an absorbed
photon σ±, reads

S±,si = Np

∑

ν′,ν

λν′ 〈v|aki,si Bν′,Qp,∓,±

×
(

1

ωp + ε
(e)
ki

− H + iη

)
B†

ν,Qp,∓,± a†
ki,si

|v〉λ∗
ν .

(4.6)

If we introduce the appropriate momenta (pi,Ki) of the
e-X pair made of the initial electron and the photocreated
virtual exciton, defined by

Ki = ki + Qp, ki = pi + βeKi, (4.7)
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Fig. 7. (a) Absorption of a σ+ photon with exciton formation, using exciton diagrams. This unique diagram corresponds to
the set of e-h ladder diagrams of Figure 1. It also corresponds to the trion absorption diagram, at zero order in Coulomb
scattering Cdir

ν′p′;νp. (b) Absorption of a σ+ photon with trion formation, when the photocreated and initial electrons have

different spins: second order process in e-X (direct) Coulomb scattering, Cdir
ν′p′;νp. (c) and (d) Same as (b), with three and four

direct Coulomb scatterings. (e) Additional diagram which appears in the response function at fourth order in Cdir
ν′p′;νp.

we can rewrite S±,si as

S±,si = Np

∑

ν′,ν

λν′ 〈v|Tν′,pi,Ki;si,∓,±

×
(

1

ωp + ε
(e)
ki

− H + iη

)
T †

ν,pi,Ki;si,∓,±|v〉λ∗
ν (4.8)

= Np

∑

ν′,ν

∑

ν1,p1

λν′〈v|Tν′,pi,Ki;si,∓,± T †
ν1,p1,Ki;si,∓,±|v〉

× Aν1p1;νpi(ai,Ki)λ∗
ν , (4.9)

in which we have used equation (3.54), which gives
(a−H)−1 acting on one e-X pair, while ai = ωp +ε

(e)
ki

+iη.
To go further, we have to differentiate the scalar product
of e-X states with photocreated and initial electrons hav-
ing the same spin or not, see equation (3.33).

4.3 Photocreated electron with spin different
from the initial one

When the spins are different, the scalar product of
e-X states, equation (4.9), differs from zero for ν1 = ν′

and p1 = pi only; so that

S �= = Np

∑

ν′,ν

λν′ Aν′pi;νpi(ai,Ki)λ∗
ν . (4.10)

Due to equation (3.58), the response function contains
contributions from singlet and triplet trions (S = 0, 1)
as expected, since with two different electron spins,
we can construct the two types of trions. By using the
expansion of Aν′p′;νp(a,K) in direct Coulomb scatterings,
equation (3.55), we can expand this S �= as

S �= =
+∞∑

n=0

S
(n)
�= , (4.11)

where S
(n)
�= has n e-X scatterings Cdir

ν1p1;ν2p2
.

4.3.1 Zero order term in e-X interactions

The term without any e-X scattering,

S
(0)
�= = Np

∑

ν

|λν |2
ai − EνpiKi

= Np

∑

ν

λν GX(ωp,Qp; ν)λ∗
ν ,

(4.12)

corresponds to the diagram of Figure 7a. This zero order
term can be rewritten without any explicit reference to
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exciton states ν, as

S
(0)
�= =Np|λ|2Ω

〈
r = 0

∣∣∣∣∣∣
1

ωp − (hX + E(X)
Qp

) + iη

∣∣∣∣∣∣
r = 0

〉
,

(4.13)
where hX is the exciton relative motion Hamiltonian of
equation (3.3).

4.3.2 First order term

The first order term in e-X scattering is zero since direct
Coulomb processes impose non-zero momentum transfers,
so that Cdir

ν′p′;νp = 0 for p′ = p (see Eqs. (3.27–28)). This
has to be contrasted with e-h diagrams for which a first
order term exists. Note that this e-h diagram first order
term is just a part of the ladder processes giving rise to the
exciton propagator, so that it is in fact already included
in the zero order exciton diagram of Figure 7a.

4.3.3 Second order term

Using equations (3.28, 55), the second order term in
e-X scatterings reads

S
(2)
�= = Np

∑

ν′,ν

λν′ GX(ωp,Qp; ν′)

×
[
∑

ν1,q1

W ν′ν1−q1
W ν1ν

q1

∆ν1,q1

]
GX(ωp,Qp; ν)λ∗

ν , (4.14)

in which we have set

∆ν,q = ωp −
(
E

(X)
ν,Qp+q + ε

(e)
ki−q − ε

(e)
ki

)
+ iη. (4.15)

It is easy to check that the bracket of equation (4.14) can
also be written as

∑

ν1,q1

∫
idω1

2π
W ν′ν1−q1

B(ω1,q1)

× GX(ωp + ω1,Qp + q1; ν1)W ν1ν
q1

, (4.16)

where B(ω1,q1) is the standard bubble for the excita-
tion of one e-h pair in the “Fermi sea”, here reduced to
the (ki, si) electron,

B(ω1,q1)=(−1)
∑

k

∫
idω

2π
g
(e)
i (ω,k) g

(e)
i (ω −ω1,k−q1).

(4.17)
where g

(e)
i (ω,k) is the usual electron propagator, equal

to (ω − ε
(e)
k + iηSk,ki)−1, with Sk,ki = +1 if k �= ki

and Sk,ki = −1 if k = ki. This second order term thus

corresponds to the diagram of Figure 7b, with the e-X di-
rect scattering vertex given by equation (3.27). It can also
be rewritten without any reference to exciton states ν, as

S
(2)
�= = Np|λ|2Ω

〈
r = 0

∣∣∣∣∣∣
1

ωp − (hX + E(X)
Qp

) + iη

×
[
∑

q1

wq1(r)
1

ωp − (hX + E(X)
Qp+q1

+ ε
(e)
ki−q1

− ε
(e)
ki

) + iη

× w−q1(r)

]
× 1

ωp − (hX + E(X)
Qp

) + iη

∣∣∣∣∣∣
r = 0

〉
. (4.18)

This unique e-X diagram (7b) has to be contrasted to
the 6 diagrams corresponding to the second order term
in Vq of the standard e-h procedure (the second order lad-
der diagram of Fig. 1c plus the 5 diagrams of Fig. 2). Let
us again stress that the e-X and e-h many-body procedures
are not strictly equivalent: Diagram (7b) contains terms
in V

(n)
q with n > 2, not included in Figure 2: They are

somehow “hidden” in the exciton propagator GX which
contains all ladder processes between the photocreated
electron and the hole.

4.3.4 Third order term

In the same way, the third order term in e-X interaction
reads

S
(3)
�= = Np

∑

ν′,ν

λν′ GX(ωp,Qp; ν′)

×
[

∑

ν1,ν2;q1,q2

W ν′ν2−q2
W ν2ν1

q2−q1
W ν1ν

q1

∆ν2,q2 ∆ν1,q1

]

× GX(ωp,Qp; ν)λ∗
ν . (4.19)

Using the exciton-photon vertex, the e-X direct scatter-
ing and the exciton propagator defined above, as well as
the (ω,q) conservations standard for diagrams, it is easy
to show that this third order term just corresponds to the
diagram of Figure 7c. This unique diagram has again to
be contrasted with the 21 e-h Feynman diagrams, at third
order in Coulomb interaction (the third order ladder di-
agram of Fig. 1d plus the 20 diagrams of Fig. 3): This
again shows that our e-X diagrams are far more conve-
nient than the usual e-h Feynman diagrams, for this sim-
ple trion problem already. In more complicated problems,
they should be even better. Using them, we can thus have
some hope to calculate quantities which may appear as
impossible to obtain from the usual e-h many-body pro-
cedure. Before going further, we can note that this third
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order term also reads

S
(3)
�= = Np|λ|2Ω

〈
r = 0

∣∣∣∣∣∣
1

ωp −
(
hX + E(X)

Qp

)
+ iη

×
[
∑

q1,q2

wq2(r)
1

ωp −
(
hX + E(X)

Qp+q2
+ ε

(e)
ki−q2

− ε
(e)
ki

)
+ iη

× wq1−q2(r)
1

ωp −
(
hX + E(X)

Qp+q1
+ ε

(e)
ki−q1

− ε
(e)
ki

)
+ iη

× w−q1(r)

]
× 1

ωp −
(
hX + E(X)

Qp

)
+ iη

∣∣∣∣∣∣
r = 0

〉
. (4.20)

4.3.5 Higher order terms

While we did not even dare to draw the e-h Feynman
diagrams at fourth order in Coulomb interaction, the sim-
plicity of the e-X diagram procedure may lead us to think
that the fourth order terms in e-X interactions should be
given by the ladder diagram of Figure 7d. And similarly
at higher orders. The correct result is actually somewhat
more subtle.

The standard diagrammatic procedure with electron
propagators, that we partly use here, as in the bub-
ble B(ω1,q1) of equation (4.17), is actually designed to
describe excitations of the Fermi sea, i.e., processes in
which k �= k − qn. While at first and second order in
e-X Coulomb processes, this is automatically fulfilled due
to the q �= 0 constraint on the Wν′ν(q) scatterings, this
is not imposed anymore at higher orders. Indeed, while in
the fourth order term of Aν′pi;νpi(ai,Ki), the first and
last scatterings still impose q1 �= 0 and q3 �= 0, the
intermediate scatterings simply impose (q2 − q1) �= 0
and (q3 − q2) �= 0 so that we can have q2 = 0. The
precise calculation of the ladder diagram of Figure 7d
confirms that this diagram only has excited Fermi sea
pairs (k,k − q2) with q2 �= 0: The q2 = 0 ones are miss-
ing. Since the expansion of Aν′pi;νpi(ai,Ki) does contain
all possible scatterings of the photocreated exciton, i.e.,
the qn = 0 scatterings too, we must add the diagram of
Figure 7e to the one of Figure 7d, in order to have all
the fourth order terms of S �=. We can then be tempted
to separate this additional diagram (and the similar ones
at higher orders) from the set of ladder diagrams with 0,
1, 2 scatterings between the exciton and the electron, in
which the exciton is always in a state Q �= Qp. As ex-
plained in more details below, this idea turns out to be a
bad one.

To conclude, we can say that, when the photocreated
electron and the initial electron have different spins, the
response function S �= corresponds to all possible diagrams
between one electron and one exciton, with the following
characteristics:

(i) These diagrams have one exciton line only, going
from right to left, since there is one deep hole only: the
photocreated one.

(ii) The photocreated (virtual) exciton suffers various
scatterings, without any electron exchange with the initial
electron, because, for two electrons having different spins,
the deep hole can only recombine with the photocreated
electron.

(iii) These diagrams have a unique conduction-hole
line, going from left to right: Since the initial state has
one electron (ki, si) only, the corresponding initial “Fermi
sea” can have one hole only, with a well defined momen-
tum, ki, so that this hole cannot scatter. With such an es-
sentially empty “Fermi sea”, the conduction electron (si)
has, on the opposite, plenty of sites to scatter.

4.3.6 Summation of e-X ladder diagrams

The trion absorption response function S �= for photocre-
ated and initial electrons with different spins, corresponds
to the set of e-X ladder diagrams of Figure 7. They contain
direct Coulomb processes only, the exciton being always
made with the same electron.

Using equations (3.58–59), these diagrams can be
summed up in terms of the trion energies and wave func-
tions, as

Aν′pi;νpi(ai,Ki) =
∑

S

∑

ηS

〈ν′,pi|ηS〉〈ηS |ν,pi〉
ai − E

(T )
ηS ,Ki

, (4.21)

where pi is the relative motion momentum of the e-X pair
made of the initial electron and the photocreated exciton,
defined in equation (4.7). According to equations (4.2, 10),
this leads to

S �= = Np|λ|2Ω
∑

S

∑

ηS

|〈r = 0,pi|ηS〉|2

ωp − (E(T )
ηS ,Ki

− ε
(e)
ki

) + iη
, (4.22)

in agreement with our previous work on trion absorp-
tion [19].

By using the trion relative motion Hamiltonian hT ,
which is such that (hT − ε

(T )
ηS )|ηS〉 = 0, equation (4.22)

also reads

S �= = Np|λ|2Ω

×
〈

r = 0,pi

∣∣∣∣∣
1

ωp − (hT + E(T )
Ki

− ε
(e)
ki

) + iη

∣∣∣∣∣ r = 0,pi

〉
,

(4.23)

From the above result, it is easy to recover the vari-
ous terms of S �= given in equations (4.13, 18, 20): Since
hT = h

(0)
T + w(r,u), we get, from equation (4.23) and the

expansion (3.62) of 1/(a′ − hT ),

S �= = Np|λ|2Ω
〈

r = 0,pi

∣∣∣∣∣
1

a′
i − h

((0)
T

+
1

a′
i − h

(0)
T

w(r,u)
1

a′
i − h

(0)
T

+ · · ·
∣∣∣∣∣ r = 0,pi

〉
, (4.24)
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Fig. 8. (a) Integral equation (4.28) for the response function S �= when the photocreated and initial electrons have different
spins. The cross corresponds to all possible diagrams shown in Figure 8b. (b) Processes contributing to the exciton scatter-
ing Γν′ν appearing in the integral equation (4.28): In these “bubbles”, the exciton momentum always differs from the initial
momentum Qp, by construction.

where a′
i = ωp + ε

(e)
ki

− E(T )
Ki

+ iη. By inserting the closure
relation for free e-X states |ν,p〉 in front of each 1/(a′

i −
h

(0)
T ), the S �= zero order term appears as proportional to

〈
r = 0,pi

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ r = 0,pi

〉
=

〈
r = 0

∣∣∣∣∣
1

a′
i − hX − ε

(eX)
pi

∣∣∣∣∣ r = 0

〉
, (4.25)

which is nothing but the expectation value of (ωp − hX −
E(X)
Qp

+ iη)−1 in the |r = 0〉 state, in agreement with equa-
tion (4.13).

The first order term of S �= is proportional to

∑

ν′,p′,ν,p

〈
r = 0,pi

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ ν
′,p′

〉
〈ν′,p′|w(r,u)|ν,p〉

×
〈

ν,p

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ r = 0,pi

〉
, (4.26)

which imposes p′ = pi = p. It is thus equal to zero,
since Coulomb scatterings impose non-zero momentum
transfers.

In a similar way, the second order term is propor-
tional to

∑

ν′,p′,ν,p,ν1,p1,ν2,p2

〈
r = 0,pi

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ ν
′,p′

〉

× 〈ν′,p′|w(r,u)|ν2,p2〉
〈

ν2,p2

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ ν1,p1

〉

× 〈ν1,p1|w(r,u)|ν,p〉
〈

ν,p

∣∣∣∣∣
1

a′
i − h

(0)
T

∣∣∣∣∣ r = 0,pi

〉
,

(4.27)

which imposes p′ = pi = p and p2 = p1. By writing p1 =
pi−q1, it is straightforward to check that equation (4.27)
leads to equation (4.18).

And so on, for the higher order terms.

4.3.7 An inappropriate separation

Let us end this part by explaining why it is inappropriate
to treat separately the diagrams with excitons having a
center of mass momentum Qp +qn equal to Qp. This sep-
aration would lead to have S �= as in Figure 8a, where the
cross represents all the topologically connected e-X ladder
diagrams of Figure 8b, with intermediate excitons having
their center of mass momentum Qp + qn �= Qp. So that

S �= = Np

∑

ν′,ν

λν′
[
δν′,ν GX(ωp,Qp; ν)

+ GX(ωp,Qp; ν′)Γν′ν GX(ωp,Qp; ν) + · · ·
]
λ∗

ν . (4.28)

Using the above section, the exciton scattering Γν′ν as-
sociated to the cross appears as 〈ν′|T (ωp,Qp,ki)|ν〉; so
that all these ladder diagrams with qn �= 0 can be
summed up as

〈
ν′

∣∣∣∣∣∣
1

ωp − hX − E(X)
Qp

+ iη
+

1

ωp − hX − E(X)
Qp

+ iη

× T (ωp,Qp,ki)
1

ωp − hX − E(X)
Qp

+ iη
+ · · ·

∣∣∣∣∣∣
ν

〉
=

〈
ν′

∣∣∣∣∣∣
1

ωp − h̃X − E(X)
Qp

+ iη

∣∣∣∣∣∣
ν

〉
, (4.29)

where h̃X = hX +T (ωp,Qp,ki) can be seen as the Hamil-
tonian of the photocreated exciton dressed by its possible
scatterings with the initial electron.
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While physically appealing, this concept is technically
useless: Indeed, e-X ladder processes can be summed up
easily in terms of singlet and triplet trions if — and only
if — all qn’s are included; the ones with qn �= 0, as
in T (ωp,Qp,ki), are not known. Consequently, although
physically nice, equation (4.29) which would lead to

S �= = Np|λ|2Ω
〈

r = 0

∣∣∣∣∣∣
1

ωp − h̃X − E(X)
Qp

+ iη

∣∣∣∣∣∣
r = 0

〉
,

(4.30)
has no practical use.

4.3.8 Conclusion

The response function, in the case of a photocreated elec-
tron with spin different from the initial one, is very similar
to the response function of an exciton: It just contains e-
X ladder processes. However, while, in the exciton case,
there is no way to cut these ladder diagrams into separate
pieces, in the trion case, the exciton — which plays the
role of the hole in the e-X ladder processes — can possibly
return into a (νn,Qp) state after a set of scatterings. This
makes the corresponding diagram topologically separable.
These two types of diagrams have however to be included
in order to find all terms appearing in the response func-
tion (see Figs. 7d, e). Another important point is the fact
that there is no additional diagram coming from possible
electron exchanges, although, at any stage, the exciton
can be made either with the photocreated or the initial
electron. This is due to the fact that, in a well having
electrons with different spins, the hole can only recombine
with the photocreated electron; so that the number of ex-
changes which can take place before recombination, has to
be even. Since from equation (3.23), two exchanges reduce
to an identity, two exchanges are identical to no exchange
at all.

A last comment: For most people, “trion” in fact
means “ground state trion”. Such trion corresponds to a
singlet state, i.e., a state with two electrons having differ-
ent spins: It thus corresponds to the e-X ladder diagrams
of this paragraph. The real challenge with trions seen as
interacting e-X pairs, in fact arises when the two electrons
have the same spin, i.e., when the hole can recombine with
any of the two electrons, for the electron exchange to ex-
plicitly enter the problem. For completeness, let us end
this work by considering these triplet trions, although they
are usually not the interesting ones.

4.4 Photocreated electron with spin identical
to the initial one

Most probably, trions have not up to now been treated as
a set of interacting e-X pairs because exchange processes
in forming the exciton have appeared as quite tricky to
handle. Our commutation technique allows to take care of
these carrier exchanges in a simple and transparent way.

The response function S �= for different electron spins,
equation (4.22), reads in terms of trion states |ηS〉 with
both, S = 0 and S = 1, as reasonable since, with | + −〉
electrons, singlet and triplet trions can be formed. On the
opposite, if the two electrons have the same spin, as | + +〉,
we can only form (S = 1) trions, so that only (S = 1)
trions should enter the response function: Exchange pro-
cesses, which take place when the two electron spins are
identical, must somehow withdraw the (S = 0) trion con-
tributions from the final result. Let us now see how they
do it.

When the electron spins are the same, the scalar prod-
uct of two e-X states, equation (4.9), has two terms instead
of one (see Eq. (3.33)): Beside the ν1 = ν′ and p1 = pi

term, there is also an exchange term, so that

S= = Np

∑

ν′,ν

λν′
[
Aν′pi;νpi(ai,Ki)

−
∑

ν1,p1

Lν′pi;ν1p1 Aν1p1;νpi(ai,Ki)
]
λ∗

ν . (4.31)

4.4.1 Response function in terms of trions

Since, from equations (3.19, 59),
∑

ν1,p1

Lν′pi;ν1p1 A(S)
ν1p1;νpi

= (−1)S A
(S)
ν′pi;νpi

, (4.32)

the response function for identical electron spins in fact
reads

S= = 2Np|λ|2Ω
∑

η1

|〈η1|r = 0,pi〉|2

ωp − (E(T )
η1,Ki

− ε
(e)
ki

) + iη
, (4.33)

so that it contains contributions from triplet trions only,
as expected. Note that, due to this restriction, S= cannot
be written in a compact form in terms of the trion relative
motion Hamiltonian hT , as for S �= in equation (4.23).

4.4.2 Expansion in e-X diagrams

If we now come back to equation (4.31) and use the expres-
sion (3.55) of Aν′p′;νp(a,K) in terms of e-X scatterings,
we find that, beside the set of direct ladder diagrams of S �=
which come from the first term of equation (4.31), there
are additional exchange diagrams coming from the sec-
ond term. These exchanges however appear through the
Lν′pi;ν1p1 factor which takes place “at the end” of a set
of direct e-X scatterings, just before the exciton recombi-
nation, as Aν1p1;νpi(ai,Ki) contains direct Coulomb scat-
terings only. From equation (4.31), we thus see that for
a photocreated electron with the same spin as the initial
electron, the response function reads

S= = S �= − Ŝ, (4.34)

Ŝ = Np

∑

ν,ν1,p1

λ̂pi;ν1,p1 Aν1p1;νpi(ai,Ki)λ∗
ν , (4.35)
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Fig. 9. Semiconductor-photon interaction λ̂p;ν1p1 dressed by
the presence of one electron k = p + βXK having the same
spin as the photocreated electron.

where Ŝ comes from all possible exchange processes.
λ̂p;ν1,p1 , precisely given by

λ̂p;ν1,p1 =
∑

ν

λν Lνp;ν1p1 = λ 〈p + αep1|ν1〉, (4.36)

appears as the exciton-photon vertex renormalized by car-
rier exchanges (see Fig. 9).

The zero order term of Ŝ in e-X Coulomb processes
comes from the zero order term of Aν1p1;νpi(ai,Ki)
in Cdir

ν′p′;νp. Using equation (3.55), it reads

Ŝ(0) = Np

∑

ν

λ̂pi;ν,pi λ∗
ν

ai − EνpiKi

= Np

∑

ν

λ̂pi;ν,pi GX(ωp,Qp; ν)λ∗
ν . (4.37)

Ŝ(0) thus corresponds to the diagram of Figure 10a, since

λ̂pi;ν,pi = −
∑

k

∫
idω

2π
λ̂βXk−βeQp;ν,βXk−βeQp g

(e)
i (ω,k).

(4.38)
Ŝ(0) can also be written as

Ŝ(0) = Np|λ|2
√

Ω

×
〈

(1 + αe)pi

∣∣∣∣∣∣
1

ωp − (hX + E(X)
Qp

) + iη

∣∣∣∣∣∣
r = 0

〉
.

(4.39)

As for the first order term, it reads

Ŝ(1) =
∑

ν

[
∑

ν1,q1

λ̂pi;ν1,pi−q1 Wν1ν(q1)
∆ν1,q1

]

× GX(ωp,Qp; ν)λ∗
ν . (4.40)

Note that, when the photocreated electron has a spin dif-
ferent from the initial one, the first order term of the
response function S �= is zero: The exciton-photon vertex
then imposes p = pi while Cdir

ν′p′;νp = 0 for p′ = pi = p.
On the opposite, first order e-X scatterings can exist when

the two spins are identical, because the electron exchanges
appearing in the dressed exciton-photon vertex do not
impose p′ = pi anymore. The first order term of Ŝ(1)

in fact corresponds to the diagram of Figure 10b, since,
for q1 �= 0,

λ̂pi;ν1,pi−q1

∆ν1,q1

= −
∑

k

∫
idω

2π

∫
idω1

2π

× λ̂βXk−βeQp;ν1,βXk−βeQp−q1

× g
(e)
i (ω,k) g

(e)
i (ω − ω1,k − q1)

× GX(ωp + ω1,Qp + q1; ν1). (4.41)

This first order term can also be written as

Ŝ(1) = Np|λ|2
√

Ω
∑

q1

〈
(1 + αe)pi − αeq1

∣∣∣∣∣

× 1

ωp − (hX + E(X)
Qp+q1

+ ε
(e)
ki−q1

− ε
(e)
ki

) + iη

× w−q1(r)
1

ωp − (hX + E(X)
Qp

) + iη

∣∣∣∣∣r = 0

〉
. (4.42)

Using the same procedure, we can show that the second
order terms of Ŝ in e-X Coulomb processes correspond to
the diagram of Figure 10c plus the one of Figure 10d: here
again, the e-X scatterings appearing in Aν′pi;νpi(ai,Ki)
impose qn − qn−1 �= 0 (with q0 ≡ 0): this leads to
q1 �= 0 �= q2 − q1, so that we can have both, q2 �= 0 and
q2 = 0. As the standard rules for calculating diagrams
only lead to processes in which the Fermi sea is excited,
the diagram of Figure 10c takes into account q2 �= 0 ex-
citations only. The q2 = 0 ones have thus to be included
separately through the diagram of Figure 10d.

If we now turn to the third order terms of Ŝ, they cor-
respond to the diagrams of Figures 10e, f, g. And so on...

This thus shows that the additional exchange diagrams
which take place when the photocreated and initial elec-
trons have the same spin, and which are of crucial im-
portance to withdraw the singlet contributions appear-
ing in S �=, correspond to a set of “open” ladder diagrams
which have the following characteristics:

(i) They all have one conduction-hole line only, without
any hole scattering since the initial “Fermi sea” contains
one electron only.

(ii) They all have an exciton possibly scattered by di-
rect e-X processes without any exchange with the electron,
although the two electrons have the same spin.

(iii) The fact that the exciton can be made with
the initial or the photocreated electron appears, once
and for all, in the renormalized exciton-photon interac-
tion λ̂pi;ν,p, the photocreated hole possibly recombining
with any of the two electrons. These diagrams thus start
with a bare exciton-photon vertex λ∗

ν and end with a
dressed one λ̂pi;ν,p — or the reverse.
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Fig. 10. Photon absorption with trion formation when the photocreated and initial electrons have the same spin. The diagrams
of this figure have to be added to the diagrams of Figure 7. Their main effect is to withdraw the S = 0 trion contributions
which cannot exist when the two electron spins are identical. (a) Zero order in e-X direct Coulomb scattering: The photocreated
exciton already feels the presence of the initial electron through exchange processes included in the dressed semiconductor-photon
interaction. (b) First order in Cdir

ν1p1;νp. (c) and (d) Second order. (e), (f) and (g) Third order.

(iv) Since the scattered exciton can be in
a (νn,Qp) state, while the standard rules for dia-
grams lead to processes in which the “Fermi sea” —
here the initial electron — is excited, we must add to
the connected “open” ladder diagrams, diagrams with
an “open” part separated from a ladder part, as in
Figures 10d, f, g.

4.5 Volume dependence

From the response functions S �= and S= in terms of trions
given in equations (4.22, 33), we see that the trion oscil-
lator strength reads in terms of the Fourier transform of
the trion relative motion wave function 〈r,u|ηS〉, written
with the “good” trion variables r and u, defined in equa-
tions (3.2, 10). We also see that, when the photon polar-
ization is such that only (S = 1) trions can be formed, the

oscillator strength of these (S = 1) trions have an addi-
tional factor of 2, compared to the case in which (S = 0, 1)
trions can be created.

From the expression |λ|2Ω|〈r = 0,pi|η〉|2 of the trion
oscillator strength given in equation (4.22), it is easy to
estimate its size for bound state (trion), partially dissoci-
ated state (e+X) and totally dissociated state (e+e+h).
Let us recall it [19]:

(i) For bound trion, 〈r,u|η〉 has an extension over r
of the order of aX and an extension over u of the or-
der of aT , with aT 	 aX since the trion binding en-
ergy is much weaker than the exciton one. In 2D, dimen-
sional arguments lead to 〈r = 0,u = 0|η〉 ∼ (aXaT )−1.
From the spatial extension aT of 〈r = 0,u|η〉, we then
find, again from dimensional arguments, that, for p small,
more precisely for p � a−1

T , we have 〈r = 0,p|η〉 ∼
〈r = 0,u = 0|η〉〈p|u � 0〉a2

T ∼ aT /aXL, where L is
the sample size (L2 = Ω). This leads to a bound trion
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oscillator strength ∼ |λ|2(aT /aX)2, independent from the
sample volume.

(ii) For a partially dissociated trion, 〈r,u|η〉 now
has an extension aX over r but L over u, so that
〈r = 0,u = 0|η〉 ∼ (aXL)−1. For p small, we then have
〈r = 0,p|η〉 ∼ 1/aX , so that partially dissociated trions
have an oscillator strength ∼ |λ|2L2/a2

X .
(iii) For totally dissociated trion, 〈r,u|η〉 has an exten-

sion L over r and L over u, so that 〈r = 0,u = 0|η〉 ∼ L−2.
For small p, this gives 〈r = 0,p|η〉 ∼ 1/L, which leads to
an oscillator strength |λ|2, which is sample volume inde-
pendent, as the one of exciton diffusive states, i.e., free
carriers. This oscillator strength is however smaller than
the bound trion one, the trion extension aT being some-
what larger than the exciton extension aX .

The partially dissociated trion thus has essentially the
same oscillator strength as the exciton, while the bound
trion oscillator strength is a2

T /L2 smaller. It is thus van-
ishingly small in the large sample limit, i.e., the limit of
solid state physics. This is after all not surprising: If we
take a huge sample and if we add just one electron, we
cannot expect any sizeable change in the photon absorp-
tion! From a technical point of view, if we consider the
volume dependence of the diagrams representing the re-
sponse function, we find that the dominant one, in the
large L limit, is the bare exciton diagram of Figure 7a.

These quite simple arguments lead us to conclude that,
when a line is seen, well below the exciton line, in the ab-
sorption spectrum of a macroscopic sample of doped semi-
conductor, it cannot be due to a (clean) trion because its
oscillator strength would be a trion volume divided by a
sample volume smaller than the exciton one. The observed
line is most probably due to a trion having many-body ef-
fects with the (N−1) other electrons of the semiconductor,
or better to a photocreated exciton dressed by the N elec-
trons already present in the sample. This quite difficult
many-body problem will be addressed in a further work,
using the tools we have established in Sections 3 and 4,
which allow to treat excitons interacting with electrons
through e-X diagrams.

5 Conclusion

We have considered the simplest problem on trion, namely
the photon absorption in the presence of one electron. We
have first shown that standard Feynman diagrams, with
free electrons and holes, are totally inappropriate: For the
trion being a bound state, Coulomb processes have to be
included exactly, i.e., at all orders. While these Coulomb
processes can be easily handled between the two carriers
of an exciton, this is totally hopeless in the case of three
carriers.

We propose to reduce this three-body problem to a
two-body problem by considering the trion as an electron
interacting with an exciton. Although physically appeal-
ing, this approach however faces the problem of the elec-
tron indistinguishability, i.e., the fact that the exciton can
a priori be made with any of the two electrons. Our com-

mutation technique, designed to deal with this problem,
allows to overcome this difficulty.

We find that when the photocreated and initial elec-
trons have different spins — which is what happens if
we want to photocreate a ground state trion —, we can
forget about these possible electron exchanges: The re-
sponse function to the photon field just corresponds to a
set of ladder diagrams between e-X pairs (ν,p,K), with
K being the center of mass momentum of the pair —
constant in these ladder processes —, p the relative mo-
tion momentum of the e-X pair and ν characterizing the
exciton relative motion level. The e-X interaction ver-
tex Cdir

ν′p′;νp of these novel diagrams corresponds to direct
Coulomb processes between electron and exciton, the “in”
exciton ν and the “out” exciton ν′ being made with the
same electron. Cdir

ν′p′;νp reads in terms of the Fourier trans-
form wq(r) of the Coulomb potential w(r,u) between the
electron e′ and the exciton made of (e, h).

The possible electron exchanges are only important
when the spins of the two electrons are identical, i.e., when
triplet trions (Sz = ±1) are the only ones photocreated.
We can include these exchanges through a dressed exciton-
photon interaction. They thus play a role, once and for all,
when the hole recombines, so that we are again left with
direct e-X ladder processes only.

The physical reason for a so trivial consequence of car-
rier exchanges lies in the fact that two exchanges reduce
to an identity; so that, either we end with no exchange at
all — as when the photocreated hole can only recombine
with the photocreated electron, which is what happens
when the two electron spins are different —, or we end
with zero or one exchange — as when the hole can recom-
bine with either the photocreated electron or the initial
electron, which is what happens when the two electrons
have the same spin.

In Section 3 of this paper, we have also collected all im-
portant results on trions derived in our previous works —
plus some unpublished ones. This “background on trion”,
which leads to this novel many-body procedure in terms
of electrons and excitons, will be of great help to study the
interaction of trion with carriers in doped semiconductors:
Indeed, the existing literature on this very difficult many-
body problem, which relies on standard electron-hole pro-
cedure — the only one at hand up to now —, is rather
unsatisfactory, as explained in reference [19].
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